1,143 research outputs found

    The role of P-wave inelasticity in J/psi to pi+pi-pi0

    Full text link
    We discuss the importance of inelasticity in the P-wave pi pi amplitude on the Dalitz distribution of 3pi events in J/psi decay. The inelasticity, which becomes sizable for pi pi masses above 1.4 GeV, is attributed to KK to pi pi rescattering. We construct an analytical model for the two-channel scattering amplitude and use it to solve the dispersion relation for the isobar amplitudes that parametrize the J/psi decay. We present comparisons between theoretical predictions for the Dalitz distribution of 3pi events with available experimental data.Comment: 10 pages, 10 figure

    Universal Markovian reduction of Brownian particle dynamics

    Full text link
    Non-Markovian processes can often be turned Markovian by enlarging the set of variables. Here we show, by an explicit construction, how this can be done for the dynamics of a Brownian particle obeying the generalized Langevin equation. Given an arbitrary bath spectral density J0J_{0}, we introduce an orthogonal transformation of the bath variables into effective modes, leading stepwise to a semi-infinite chain with nearest-neighbor interactions. The transformation is uniquely determined by J0J_{0} and defines a sequence {Jn}n∈N\{J_{n}\}_{n\in\mathbb{N}} of residual spectral densities describing the interaction of the terminal chain mode, at each step, with the remaining bath. We derive a simple, one-term recurrence relation for this sequence, and show that its limit is the quasi-Ohmic expression provided by the Rubin model of dissipation. Numerical calculations show that, irrespective of the details of J0J_{0}, convergence is fast enough to be useful in practice for an effective Markovian reduction of quantum dissipative dynamics

    P-wave pi pi amplitude from dispersion relations

    Full text link
    We solve the dispersion relation for the P-wave pi pi amplitude.We discuss the role of the left hand cut vs Castillejo-Dalitz-Dyson (CDD), pole contribution and compare the solution with a generic quark model description. We review the the generic properties of analytical partial wave scattering and production amplitudes and discuses their applicability and fits of experimental data.Comment: 10 pages, 7 figures, typos corrected, reference adde

    The explicit expression of the fugacity for weakly interacting Bose and Fermi gases

    Full text link
    In this paper, we calculate the explicit expression for the fugacity for two- and three-dimensional weakly interacting Bose and Fermi gases from their equations of state in isochoric and isobaric processes, respectively, based on the mathematical result of the boundary problem of analytic functions --- the homogeneous Riemann-Hilbert problem. We also discuss the Bose-Einstein condensation phase transition of three-dimensional hard-sphere Bose gases.Comment: 24 pages, 9 figure

    Response of a Fermi gas to time-dependent perturbations: Riemann-Hilbert approach at non-zero temperatures

    Full text link
    We provide an exact finite temperature extension to the recently developed Riemann-Hilbert approach for the calculation of response functions in nonadiabatically perturbed (multi-channel) Fermi gases. We give a precise definition of the finite temperature Riemann-Hilbert problem and show that it is equivalent to a zero temperature problem. Using this equivalence, we discuss the solution of the nonequilibrium Fermi-edge singularity problem at finite temperatures.Comment: 10 pages, 2 figures; 2 appendices added, a few modifications in the text, typos corrected; published in Phys. Rev.

    Limiting Laws of Linear Eigenvalue Statistics for Unitary Invariant Matrix Models

    Full text link
    We study the variance and the Laplace transform of the probability law of linear eigenvalue statistics of unitary invariant Matrix Models of n-dimentional Hermitian matrices as n tends to infinity. Assuming that the test function of statistics is smooth enough and using the asymptotic formulas by Deift et al for orthogonal polynomials with varying weights, we show first that if the support of the Density of States of the model consists of two or more intervals, then in the global regime the variance of statistics is a quasiperiodic function of n generically in the potential, determining the model. We show next that the exponent of the Laplace transform of the probability law is not in general 1/2variance, as it should be if the Central Limit Theorem would be valid, and we find the asymptotic form of the Laplace transform of the probability law in certain cases

    The X-ray edge singularity in Quantum Dots

    Get PDF
    In this work we investigate the X-ray edge singularity problem realized in noninteracting quantum dots. We analytically calculate the exponent of the singularity in the absorption spectrum near the threshold and extend known analytical results to the whole parameter regime of local level detunings. Additionally, we highlight the connections to work distributions and to the Loschmidt echo.Comment: 7 pages, 2 figures; version as publishe

    On the applicability of the equations-of-motion technique for quantum dots

    Full text link
    The equations-of-motion (EOM) hierarchy satisfied by the Green functions of a quantum dot embedded in an external mesoscopic network is considered within a high-order decoupling approximation scheme. Exact analytic solutions of the resulting coupled integral equations are presented in several limits. In particular, it is found that at the particle-hole symmetric point the EOM Green function is temperature-independent due to a discontinuous change in the imaginary part of the interacting self-energy. However, this imaginary part obeys the Fermi liquid unitarity requirement away from this special point, at zero temperature. Results for the occupation numbers, the density of states and the local spin susceptibility are compared with exact Fermi liquid relations and the Bethe ansatz solution. The approximation is found to be very accurate far from the Kondo regime. In contrast, the description of the Kondo effect is valid on a qualitative level only. In particular, we find that the Friedel sum rule is considerably violated, up to 30%, and the spin susceptibility is underestimated. We show that the widely-used simplified version of the EOM method, which does not account fully for the correlations on the network, fails to produce the Kondo correlations even qualitatively.Comment: 16 pages, 5 figure

    The spectrum of large powers of the Laplacian in bounded domains

    Full text link
    We present exact results for the spectrum of the Nth power of the Laplacian in a bounded domain. We begin with the one dimensional case and show that the whole spectrum can be obtained in the limit of large N. We also show that it is a useful numerical approach valid for any N. Finally, we discuss implications of this work and present its possible extensions for non integer N and for 3D Laplacian problems.Comment: 13 pages, 2 figure

    Conformal Dynamics of Precursors to Fracture

    Full text link
    An exact integro-differential equation for the conformal map from the unit circle to the boundary of an evolving cavity in a stressed 2-dimensional solid is derived. This equation provides an accurate description of the dynamics of precursors to fracture when surface diffusion is important. The solution predicts the creation of sharp grooves that eventually lead to material failure via rapid fracture. Solutions of the new equation are demonstrated for the dynamics of an elliptical cavity and the stability of a circular cavity under biaxial stress, including the effects of surface stress.Comment: 4 pages, 3 figure
    • …
    corecore